When you draw an <u>altitude</u> to the hypotenuse of a right triangle, you create three right triangles. How are the triangles related? Altitude - Segment

Greenetric Mean D From a vertex 1 to opposite side

DABC~AACD~ACBD

The altitude to the hypotenuse of a right triangle divides the triangle into two triangles that are similar to the original triangle and to each other.

PROOF: SEE EXERCISE 14.

Then... $\triangle CAB \sim \triangle DAC \sim \triangle DCB$

Given that $\triangle PQR \sim \triangle QSR$, what is QS?

$$\frac{9}{x} = \frac{15}{20}$$

$$15 \times = 180$$

$$\times = 12$$

$$\frac{15}{20} = \frac{12}{x}$$
 $15x = 240$
 $x = 16$

Use $\triangle ABC$.

What is CD?

$$\frac{AD}{CD} = \frac{CD}{DB}$$

$$\frac{5}{X} = \frac{X}{15}$$

$$\sqrt{X^{2}} = \sqrt{75}$$

$$X = 8.6$$

The length of the altitude to the hypotenuse of a right triangle is the geometric mean of the lengths of the segments of the hypotenuse.

PROOF: SEE EXERCISE 14.

If...

Then... $\frac{AD}{CD} = \frac{CD}{DB}$

Given $\triangle RST$, what is RT?

$$\frac{9.6}{x} = \frac{x}{5.4}$$
 $\sqrt{x^2} = \sqrt{51.84}$
 $x = 7.2$

- **4.** Use *△JKL*.
- a. What is JL?

Enter your answer

CHECK ANSWER

b. What is KL?

$$\frac{20}{x} = \frac{x}{29}$$

$$x = \frac{480}{29}$$

$$x = 21.9$$

COROLLARY 2 TO THEOREM 7-4

The altitude to the hypotenuse of a right triangle divides the hypotenuse so that the length of a given leg is the geometric mean of the length of the hypotenuse and the length of the segment of the hypotenuse that is adjacent to the leg.

PROOF: SEE EXERCISE 14.

Then...
$$\frac{AB}{AC} = \frac{AC}{AD}$$
 and $\frac{AB}{CB} = \frac{CB}{DB}$

- 5. Use the geometric mean to find each unknown.
- **a.** Find the value of y.

b. Find the value of z.

$$\frac{9}{2} = \frac{2}{13}$$
 $\sqrt{2^2} = \sqrt{17}$
 $2 = 10.8$

Zhang is constructing a 4-ft high loading ramp. The length of the back of the base must be 12.8 ft. How long must the entire base be?

$$\frac{BC}{CA} = \frac{CA}{CD}$$

$$\frac{12.8}{4} = \frac{4}{2.8}$$

$$\frac{12.8 \times = 16}{12.8}$$

$$\times = 1.25$$

6. How long should Zhang make the ramp?

Ent4 2+ 12.8 = (A13) or
$$\frac{12.8}{\times} = \frac{\times}{14.05}$$

13.4 ft CHECK ANSWER

Use $\triangle DEF$ to find ER.

Ent
$$\frac{ER}{q} = \frac{q}{27}$$
 wer. $(ER)^2 + (q)^2 = (3\sqrt{6})^2$
 $(ER)^2 + 81 = 90$
 $ER^2 = 9$
 $ER = 3$

Use $\triangle DEF$ to find DF.

Use $\triangle DEF$ to find DE. 30

28.4

Use $\triangle PQR$ to find QA.

Enter
$$\frac{2}{QA} = \frac{QA}{8}$$

$$QA^2 = 14$$

$$QA = 4$$

Use
$$\triangle PQR$$
 to find QR .

 $\zeta_1 + \delta^2 = \alpha R^2$

8.9

4.4

10. Deshawn installs a shelf bracket. What is the widest shelf that will fit without overhang? Explain.

En
$$\frac{4}{x} = \frac{x}{9}$$
 answer.
 $x = 3$
 $x = 6$

shelf width
4 in.

5 in.

CHECK ANSWER

